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S U M M A R Y  
The motion of a sphere towards a plane or another sphere is opposed by the fluid between them with a force which 
is inversely proportional to the gap. In consequence, it is impossible for a constant force to produce contact in a finite 
time, unless the Stokes equations are modified�9 When the gap is of the same order as the mean free path of the air 
molecules, the Stokes theory for the motion of the air must be modified. The Maxwell slip flow approximation is used 
in this paper to show that, when the gap is small, the resisting force between the approaching surfaces becomes only 
logarithmically dependent on the gap, and contact can he achieved in a finite time. The difficulty in applying the Stokes 
theory to the problem of determining collision efficiencies for cloud droplets is thereby removed. 

The calculated values of the resistance to approach are used to determine the motion of a sphere falling towards a 
plane�9 If the motion is compared with the corresponding motion when no allowance is made for slip flow, the sphere 
without slip would still be at a distance of 1.3 times the mean free path from the plane, when the sphere with slip 
has made contact. 

Transverse motion must also be considered if the trajectory of a particle close to a collector is required. The forces 
and couples on the sphere in that situation have a logarithmic dependence on the gap without slip, but they tend to 
constant values when the effect of slip is included�9 Some calculations of collision efficiency of drops falling under gravity 
(Hocking and Jonas [1]) have been amended to include the effect of slip when the colliding drops are very close 
together, and show a significant increase in the collision efficiency. 

1. Introduction 

Fluid between two surfaces resists their approach. If the motion is slow enough for the Reynolds 
number to be small, the Stokes equations predict that the resistance is inversely proportional 
to the gap between the surfaces, when this gap is small compared to the radii of curvature of 
the surfaces. The application of a finite force causing the surfaces to move closer to each other 
cannot, therefore, produce contact in a finite time. The Stokes equations are, of course, not 
valid when the gap becomes of molecular dimensions, and the exponential approach predicted 
by the Stokes theory rapidly leads to such small separations of the surfaces, when, also, it 
becomes difficult to define contact precisely. 

When the normal motion of the surfaces is combined with a transverse relative motion, 
there are circumstances in which the failure of the Stokes theory becomes an embarrassment. 
One such case is the deposition of small particles carried in a stream of air onto a collector placed 
in the flow. Numerous calculations have been made of the trajectories Of such particles in a 
variety of circumstances, but the details of the motion when the particle is very close to the 
collector are often ignored. The calculation of the efficiency of the collection process effectively 
assumes that a particle which approaches the collector to a distance which is comparable to 
the particle radius will collide with it. When the size of the collector is many times the size of 
the particles, the theory is probably sufficiently accurate. But in the similar problem of coales- 
cence of cloud droplets, it is certainly not sufficient to ignore the mutual interaction of the two 
coalescing particles as in the region of most interest to the question of the growth of cloud 
droplets by this process, the particles are of comparable size. The approach of the two particles 
is provided by their differential fall speed under gravity and the failure of the Stokes theory to 
predict contact in a finite time now causes difficulties. Under the theory, the particles will 
steadily approach each other at decreasing speeds measured along the line of centres, but 
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gravity will cause the larger drop to fall round and past the smaller, and they will eventually 
separate. In calculating collision efficiencies, it is customary to make the arbitrary assumption 
that collisions will in fact occur whenever the gap between the surfaces becomes less than some 
arbitrarily chosen small length (Davis and Sartor, [2] ; Hocking and Jonas, [1] ). This procedure 
recognises that the Stokes theory cannot explain what is taking place when the gap becomes 
very small, but it is, to say the least, unsatisfactory. Some justification of the procedure is 
afforded by the small variation of the calculated collision efficiency with this arbitrarily chosen 
length when the collision efficiency is large. There is greater variation when the collision 
efficiency is small, but such small values" do not affect the calculations of the growth rate of the 
larger drops, which is the main quantity of interest in the application to cloud physics. The 
scavenging of small particles by the cloud droplets, however, has a low efficiency, and to cal- 
culate the extent of this cleansing of the air in clouds, and the resultant deposition of the pol- 
lutant on the ground, a more accurate assessment of the arbitrarily chosen length is required. 

A complete discussion of the final stages of the approach of two liquid drops would be ex- 
tremely complicated. When the gap is not too small, it is reasonable to assume that the drops are 
effectively rigid spheres and that the Stokes theory holds. As the gap decreases, a large number 
of effects could become important, such as the deformation of the drops, internal circulation 
within them, the compressibility of the air, rarefied gas effects and inter-molecular and electrical 
forces. For drops.with radius in the range 10 #m-100 #m, which is the significant range in the 
cloud physics application, the necessary modification to the Stokes theory when the gap 
becomes comparable with the mean fre e path of the air molecules is the first effect to become 
important. The mean free path is approximately 0.1 #m, and it was shown in Hocking and Jonas 
[lJ that drop deformation, internal circulation and electrical effects of magnitude typical of 
naturally occurring clouds were all unimportant at this size gap. The results of section 2 show 
that compressibility of the air is only important if 

G = #o Wa/po h2 = O(1) or more, (1.1) 

where Po and #0 are the pressure and viscosity of the air, a is the drop radius, h is the gap 
and W is the velocity of approach of the colliding drops. For  a drop falling towards a fixed 
plane, the value of W can be found by equating the weight of the drop to the drag on the drop, 
which for small values of h/a gives 

4rcp~ a ~ g = 6rC#o a 2 W/h ,  

and hence 

G = 2a 2 p~g/9po h, 

where Ps is the density of the drop and 9 the gravitational acceleration. Thus the gap must be 
reduced to 2 x 10 -4 /2m for 100 #m drops and to 2 x 10- 6/2m for 10 pm drops before any notice 
need be taken of the compressibility of the air. 

The inter-molecular London forces are effective in promoting collisions between waterborne 
1 #m particles in shear flow (Curtis and Hocking, [3] ), but if these forces are to be important 
in the present problem their magnitude must be comparable with the weight of the drops, that 
is, 

H/16za2h2p~g = 0(1) or more, (1.2) 

where H = 5 x 10-z0 j is the Hamaker constant for water in air. Hence the inter-molecular 
forces become important when the gap is less than 3 x 10-3 #m for 100 #m drops and less than 
3 x 10 -2  #m for 10 pan drops. It follows that 10 #m is the lower end of the range of drop size 
for which the effects of allowing for the mean free path dominate the effect of inter-molecular 
forces. 

The modification of the Stokes theory when the gap is comparable with the mean free path 
is obtained in this paper. The main result is that this effect by itself reduces the resistance to 
approach of two surfaces to an extent which permits contact in a finite time. The last stages of 
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the motion as the gap tends to zero would require all the other effects mentioned above to be 
included to give a complete description. However, the details of this stage in the motion are not 
important, compared with the reduction of the time to contact from infinity to a finite value 
which permits the calculation of collision efficiencies without the need to impose any arbitrary 
minimum gap condition for collision. 

The simplest way of estimating the change in the flow, when the lengths over which changes 
in velocity occur are comparable with the mean free path, is to use the Maxwell slip-flow 
approximation. The continuum equations are retained, but the boundary condition of no slip 
is replaced by the condition that the relative velocity at the boundary be proportional to the 
tangential stress there. The constant of proportionality is not exactly defined, but is of the same 
order as the mean free path. (For a discussion of the validity of Maxwell's slip flow, see Liu 
and Lees, [4] ). At separations which are much smaller than the mean free path, the slip flow 
should be replaced by free molecule flow. 

The effect of slip on the motion of a sphere towards a fixed plane is considered in section 2. 
The gap is supposed to be small compared with the radius of the sphere, so that lubrication 
theory can be used to determine the flow and the force on the sphere. The main result is that 
the force is no longer inversely proportional to the gap, but when the gap is smaller than the 
mean free path, it is inversely proportional to the mean free path, and only logarithmically 
dependent on the gap. It is, therefore, possible for collisions to occur in a finite time. The 
particular problem for a sphere failing under gravity towards a plane is examined and the 
time for it to fall from a short distance above the plane to contact is determined. Ifa comparison 
is made between the motion with and without slip, at the time when the sphere with slip has 
made contact with the plane, the sphere moving without slip would still be at height 1.3 times 
the mean free path above the plane. Corresponding results for the normal motion of two 
spheres are given in section 3. 

The transverse motion of a sphere parallel to a plane suffers a resistance which depends on 
the logarithm of the gap. The forces and couples on a translating and rotating sphere have been 
calculated for slip flow. The forces and couples all tend to constant values when the gap is less 
than the mean free path. The values of the forces and couples are given in sections 4 and 5, and 
corresponding results for the motion of two spheres perpendicular to their line of centres in 
section 6. 

The application of these results to the collisions of cloud droplets requires the recalculation 
of the trajectories, including the slip flow amendments to the sizes of the forces when the gap is 
small. It is difficult to estimate beforehand the size of the corresponding changes, as the inertia 
of the drops must be included in the calculations, but the simple problem of a sphere falling 
towards a plane suggested that the distance of the gap chosen to make collision certain was 
too small, and the resulting collision efficiencies in Hocking and Jonas [1] were underestimated. 
Some corrected calculations are described in section 7 which show a considerable increase in 
the collision efficiency. 

2. Sphere moving normally towards a plane 

We consider first the motion of a sphere normal to a fixed plane. In the neighbourhood of the 
point where the gap between the sphere and the plane is a minimum, lubrication theory can be 
used, since variations across the gap are much larger than variations parallel to the surfaces. 
This inner region must be matched to the outer region, but the leading term in the resistance 
to normal motion comes entirely from the inner region. 

The use of lubrication theory and the matching of the inner region to the outer flow for a 
sphere moving normally and transversely in the vicinity of a plane or another sphere has been 
developed for flow without slip in a series of papers by O'Neill and Stewartson [5], Cooley and 
O'Neill [6], [7], O'Neill and Majumdar [8], Goldman, Cox and Brenner [9]. The methods of 
these authors have been adapted to include the effects of slip, and the papers will be referred to 
collectively by the symbol NS (for no slip). 
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Figure 1. Definition sketch for sphere moving near a plane. 

L. M. Hocking 

The quantities which specify the problem are the radius of the sphere a, the size of the gap h, 
the velocity of approach W, the mean free path of the air molecules 2, and the pressure, density, 
temperature and viscosity of the air at large distances from the sphere, which are respectively 
Po, Po, To and #0. Cylindrical coordinates (r', z') are used, with origin on the fixed plane and 
with z' normal to the plane and passing through the centre of the sphere (see Fig. 1). The 
equation of the sphere surface is 

z'= a+h-(a2-r '2)  ~ , (2.1) 

and the appropriate scaling of the space variables for the inner region is 

z'= hz, r'= (ah) ~r, (2.2) 

and the equation of the sphere surface then becomes 

z = 1 +�89 (2.3) 

to first order in the small parameter e=h/a. The radial and normal velocity components 
(u', w') are scaled by 

u'= e -~Wu, w'= Ww, (2.4) 

and the pressure, density, etc. are scaled by their values away from the sphere, Po, Po, etc. 
ff the viscosity is assumed to be proportional to some power c of the absolute temperature, 
under this scaling we have 

/~ = V c , (2.5) 

with/~ = T= 1 away from the sphere. The Navier-Stokes equations and the energy equation 
with the variables scaled as described become 

8p 8 (7, c Ou] (p 8u 8u au~, (2.6) -~-~+G~z < &]=GRe ~+pu~+pW~zj 
3p 
8z = 0, (2.7) 

8 y - - 1  (c~32U Te(OU~ 2 I 
GRe~T ~z 2 + = 

7 \~z/ J 

(p 8T O~z) 7"1  ( uOp 8p) 
= Re. U~r + pw - - - 7  Re ~r + W~z ' (2.8) 

where a-1 is the Prandtl number, ~ the adiabatic index and 
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G -- #oWa 
Po h2 ' (2.9) 

Re - Po Wh (2.10) 
#o 

Terms O (e) times those retained have been omitted. 
The inertial terms on the right of (2.6) can be neglected if the Reynolds number Re ~ 1. 

Then the pressure variations, and hence the density variations, are O (G) and since it was shown 
in section 1 that G ~ 1 for the drop sizes of main interest, the effect of compressibility can be 
ignored, giving 

p = T =  1 (2.11) 

throughout the motion. The equation of continuity then has its incompressible form 

3w 
rot (ru) + = 0 .  (2.12) 

The disappearance of all time derivatives when both G and Re are small means that the motion 
can be treated as quasi-steady, although the gap is continually changing. If G were 0(1) or 
more, the time dependence would have to be included in the equation of continuity and the 
problem would reduce to the solution of a partial, instead of ordinary, differential equation. 

Since from (2.7), the pressure does not vary across the gap, p is a function of r only and (2.6) 
gives 

Gu = {�89 2 + zA (r) + B (r) } (alp~dr). (2.13) 

The boundary conditions on the plane z = 0 are 

w = 0 ,  u - ~ ( & / & ) = 0 ,  (2.14) 

where fl = 62/h. The slip velocity coefficient is not precisely defined, so that 2 should be regarded 
as the mean free path multiplied by some numerical factor 0(1). On the sphere z =  1 +�89 2, the 
conditions are 

w - r u  = - 1, u+-~(&/&)  -= 0 ,  (2.15) 

and when these conditions are applied to the value of u given by (2.13) and the corresponding 
value of w, determined from (2.12), we arrive at an equation for the pressure 

d [2x(l+x)2(l+/3+x)dP 1 12G, (2.16) 
dx 

where x=�89 z. The conditions that p must satisfy are that p is finite at x = 0  and dp/dx--+O as 
x-+m, and the appropriate solution of (2.16)is 

[1 l + f i + x  fi ] (2.17) 
p ---- p , - 6 G t ~  - 2  og l + x  l + x  ' 

where pj is the pressure at the inner boundary of the outer region. 
The pressure is a maximum at x = 0  and its value there varies between Pl + 3G when f l=0  

and Pl + G//3 when/3 is large. The validity of this solution depends on the Reynolds number 
being small and on the neglect of compressibility, that is 

Re ~ 1, G ~ max (1,/3). (2.18) 

The force resisting the approach of the sphere to the plane derives partly from the pressure 
and partly from the z-component of the tangential stress on the sphere. This second contribution 
however, can be shown to be O (e) compared to the first, which gives 

f ~ a 1 (p_pl )dx ,  (2.19) h (P-Pl)dx = 3 ~  o 32 o 
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where the z-component of the force on the sphere is 6n/% WarN. 
The contribution to the force from the outer region is of smaller order (see Colley and O'Neill, 

[7] ) and need not be included, The value of the pressure given by (2.17) makes the force coef- 
ficient 

2a 
fN = ~fl~ {(1 +fl)log(l+fl)-fl}. (2.20) 

When fl < 1, the force coefficient becomes a/h, in agreement with NS, but when fl >> 1 it is 

a 62 
iN = ~ log ~-~, (2.21) 

showing that the rapid rise of the force when the gap is reduced is slowed down by the slip to a 
logarithmic increase. 

The value of fN can be used to determine the time for contact to be achieved from a given 
initial separation, when the Sphere is falling vertically under gravity towards a fixed horizontal 
plane. Because the gap is continually changing, so are the parameters G and ft. If the inertia 
of the sphere is neglected, the velocity at any instant is determined by the balance between the 
resistance, which is proportional to the velocity, and the gravitational force. The equation of 
motion is 

dh 2(ps-po)a20 
- , (2.22) fN dt 9#0 

where p~ is the density of the sphere, and fN is given by (2.20). With h = 62~, (2.22) becomes 

f l + t / ) l o g  ( i +  ~ ) -  I] d~q= _(p~-po)ag (2.23) 
dt 9#0 ' 

so that the time z for the gap to decrease from ho to 0 is 

_ 9/% "~ [(l+r/) (1 1 
(P,-po)ag fo log + ~ - ) - l l d r  / 

- 9#0 [�89 +r/o)2 log (1 + 1 )  + �89 log qo_�89 
(p,- po) ag (2.24) 

where 0o = ho/6Z Without slip, fu = a/h, and the time for the sphere to fall from a height ho to 
a height ha is 

16 2 

1 2 d" 3 4 

Figure 2. Sphere falling under gravity towards a horizontal plane, when the effect of slip is included. The straight line 
shows the corresponding heights when slip is not included. Mean free path is 0.1 #m. The time scale is 10-2s when 
the radius a= 1 #m, 10-as when a= 10 #m and 10-4s when a= 100 pro. 
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9#0 

When t/o is large, the time for contact is approximately 

9 t t o  [�89 log qo +3]  (2.26) 
- (Ps -  Po) ag 

and with no slip, the sphere at this time would still be at a height 1.342 above the plane. 
The motion of spheres of three sizes are shown in Fig. 2, where the motion starts from a gap 

equal to one-tenth of the sphere radius. The mean free path was taken to be 0.1 #m. Also shown 
is the corresponding motion when slip is not included. It can be seen that the exponential 
approach of the sphere to the plane is speeded up as the gap becomes comparable with the 
mean free path. 

3. Normal motion of two spheres 

The effect of slip on the motion of two spheres along their line of centres can be found by a 
simple extension of the analysis for a sphere moving towards a plane. Suppose that there is a 
sphere of radius az with centre at z' = a z + h and a sphere of radius a 1 with centre at z' = - aa, 
and that the sphere of radius a2 has a velocity W towards the second sphere, which is at rest. 
If the same scalings as in section 2 are made, namely (2.2) and (2.4), with a now defined by 

aa a2 
a - , (3.1) 

aa + a 2 
the equations of the two spheres in the lubrication region become 

z = 1 +�89 2 , z = -�89 z , (3.2) 
where 

a l  
c~ - . (3.3) 

at  + a2 

If we let al ~ o% we regain the special case of a sphere moving towards a plane, considered in 
section 2. 

The boundary conditions on the two spheres are 

w - ~ r u = - l ,  u + ~ / ~ z = 0 ,  on z = l + � 8 9  2, (3.4) 

1 0u wW(1-c~)ru=O,  u - g f l ~ z =  O, on z = - � 8 9  a. (3.5) 

The analysis of section 2 can now be repeated and yields an equation for the pressure which 
is identical to (2.16). The solution (2.17) still holds and so does the expression (2.20) for the 

-force on the sphere a2. If the forces in the positive z-direction on the spheres of radius a2 and 
a~ are written as 61rpoa2 Wf~ ~) and 6n#o a~ WftN ~), respectively, the force coefficients are 

2a2a2 
fs(2) - (a 1 + a2) 2 h ]3 ~ [ (1 + fl) log (1 + fl) - f l] ,  (3.6) 

f(1) - -  az fN (2) �9 (3.7) 
a l  

In the lubrication region, the forces depend only on the relative velocity of the two spheres, so 
that W is the velocity of approach when both spheres are in motion. 

4. Sphere moving parallel to a plane 

The calculation of the trajectory of a particle in the vicinity of a plane when it is moving towards 

Journal of Engineerin# Math., Voi. 7 (1973) 207-221 



214 L. M. Hockin9 

and parallel to the plane requires the determination of the force resisting the transverse motion, 
and because there is usually no net couple on the sphere, the couple due to the translation as 
well as the force and couple on a rotating sphere must be calculated. With no slip, these forces 
and couples show a logarithmic dependence on the gap between the sphere and the plane. 
When the effect of slip is included, the calculations below show that the forces and couples 
tend to constant values when the gap is less than the mean free path. Because the inner region 
where the gap is narrowest is now less dominant over the rest of the flow when the forces are 
determined, it becomes necessary to match the inner region with the flow outside to obtain the 
forces and couples to terms O(1) in the small parameter a/h. In the outer region the effect of slip 
can be ignored, since we ar e supposing tha t the radius of the sphere is much larger than the mean 
free path. The analysis of NS can be followed, the only changes necessary being the new forms 
of the boundary conditions in the inner region, allowing for slip. 

If (r', 0, z') are cylindrical polar coordinates, with z' normal to the plane, the corresponding 
velocity components can be written (u' cos 0, v' sin 0, w' cos 0), if the sphere has a velocity U 
in the direction 0 = 0 parallel to the plane and an angular velocity f2 about the axis 0 = re/2. The 
scaling of / and z' is the same as used in section 2, namely (2.2), and the velocity scaling is 

u'= Uu, v'= Uv, w'= ~ U w ,  f2= Uco/a, (4.1) 

where e = h/a. If the pressure p' is written 

p' = ito Uae~h-2p cos O, (4.2) 

the equations of motion, with terms O(e) neglected, become 

ap 
& O, (4.3) 

Op 02u 

Or - Oz 2 ' (4.4) 

p 02v 
r Oz 2 , (4.5) 

Ou u + v Ow 
O-r- + - - r  + ~z  = O, (4.6) 

and the boundary conditions are 

Ou Ov 
u - ~ f l ~ z =  v - - ~ f i ~ z =  w = O  on z = O ,  (4.7) 

_ f i Or\ 0U0z - -  1-co / 
on z = l + � 8 9  2. (4.8) 

F U - - W  -~- r 

With p = rq, these equations and boundary conditions lead to an equation for q which can be 
written 

2x( l+x)2( l+i~+x)  d2q dx~x 2 + {2x( l + x)(3 + 2~ + 3x) + 4( l + x)Z(l + ~ + x) } dq 
dxx (4.9) 

+ ( l+x)(3+Zf l+3x)q  = - 6 ( 1  +co), 

where x =�89 2, and the required solution must satisfy the conditions that q is finite at x = 0  and 
that q = O (x-2) as x ~ c e .  The latter condition is required to eliminate a solution which is too 
large at infinity to match with an acceptable solution in the outer region. When fl=0, the 
corresponding equation of NS has a very simple solution, which in the present notation is 
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6(1 +(o) (4.10) 
q - 5(1+x)2 

No such simple solution exists with/8 r 0, and the equation must be solved numerically. An 
asymptotic solution can be found when fl >> 1, and this solution is described below. The effect 
of compressibility can be neglected, provided 

#o U ae-~ 
G'--- < max(l, fl). (4.11) 

h2 Po 

The force on the sphere in the direction of the translation in the inner region is -67r#oaUf i, 
where 

f i =  _~ p + rdr, (4.12) 
0 632 z = 1 + ~r 2 

8" 

fr 
4-  

2-  

10 .4"37 4- 

l O  3 14 

1 1.91 2" 

-~ -:~ - 4  to%(h/~-5 

(b) 

2"93 

S - ~ 2.oi 

1 .og 

I i i 

-2 -3 -4 Jog (h/d -5 
Io 

0'6 - o - -  

0.4- 

~r 

0.2-  

0 -  

-O.t i = i 

-2 -3  - 4  

0=,1o = 
.------ 0.61 

& o~s 

10 045  

8" 

6" 

~F 

4 .  

(d) 

5 ' 4 7  

~ ,.30 

. 1 0  3.12 

1.!_. 1.90 

1 - 0 . 0 8  
i i t t | 

(h/a") 5 - - 2  -3 - 4  IOg,o(h '';'5/cl; I ~o 
Figure 3. Force and couple coefficients for spheres of radius a/~m moving parallel to a plane. The straight lines give 
the corresponding results with no slip. Also shown are the limiting values as h/a~O.  Mean free path is 0.1 pm. 
Figure 3 (a). Force for translatory motion. 
Figure 3(b). Couple for translatory motion. The force for rotatory motion is given by the relation fR= - - 4 9 r / 3 .  
Figure 3(c). Couple for rotatory motion. 
Figure 3(d). Force for motion under no couple. 
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(see O'Neill and Stewartson 1967) and substitution of the velocity components in terms of the 
pressure and integrating where possible gives 

f i =  �89 log 3+3x+f i  i x 3+fl + ~x2q(x)+~ oXqdx" (4.13) 

The couple on the sphere can be written 8~#o a2 Ug ~ and g~ determined similarly is 

3+3x+f l  ~ 2 ~ f~xqdx 9i= �88 3+fl  + gx q (x ) -g  . (4.14) 

These quantities must be evaluated for large x, where they are of the form A log x + B, and 
added to the contributions to the force and couple for the outer region. These outer contribu- 
tions are identical with those found in NS, and the combination eliminates the term in log x. 
The terms independent of co in (4.13) and (4.14) give the contributions to the force and couple 
from the translation and the parts with co as a factor give the corresponding contributions from 
the rotation. The total expressions for the four coefficients are denoted by fr, gr, fR and 9a, 
where the letters f and g refer to forces and couples, respectively, and the suffixes denote 
translation and rotation. The coefficients 9r and fa are related by 3fa + 4 g r = 0  (Happel and 
Brenner, [10]). The calculated values of these coefficients are shown in Fig. 3(a,b,c) for 
various size spheres and for various gaps. If the sphere is free to rotate it will move so that the 
net couple on it is zero. The corresponding force on the sphere is denoted by fr, where 

fr = fr--fRgr/ga, (4.15) 
and the values of this coefficient are shown in Fig. 3 (d). The no slip values of the coefficients are 
also shown on these figures and were derived from the results given by O'Neill and Stewartson 
[5] and Cooley and O'Neill [6]. 

5. Asymptotic solution for large/~ 

An asymptotic solution of (4.9) for large values of fl can be found. As pointed out earlier, at 
large values of fl slip flow must give way to free molecule flow and the results of this section are 
included to complete the mathematical solution but they are not necessarily physically relevant. 
We consider separately the three regions x ~ fl, 1 ~ x < fl, x > ft. It is convenient to scale 
out the factor 6(1 +e)) from the right-hand side of the equation. 

For the two outer regions, we write x = fiX, q = Q/fl2, and, retaining the largest terms only, 
(4.9) becomes 

7-x  + 10x 7 2  + 3(2 + x 2x  2 d2Q 72  + ax  Y2 + 2Q = - 1 ,  (5.1) 

and we require the solution which satisfies 

Q~�89 -z as X--+oo . (5.2) 

The solution in descending powers of X is 
1 - 2  1 1 1 1 + s 1) Q=Qa+AQ2=~X 3F2(~-+~-x/5,~-~-x/5, 1; 1 x/z, 1 -x /~ ;  - X -  

5 i + 5 + AX-2-'/(5/2)2Fl(~+,/~+~,/5, �89 , / ~ - ~ , / 5 ;  1 + 2 ( { ;  - X - i ) ,  (5.3) 

using the standard notation for generalised hypergeometric functions. Both parts of the solution 
are bounded for X >~ 1, but not for X < 1, so that the correct continuation into the middle region 
must be used. The omitted part of the complete solution of (5.1) has a leading term X-2 +./(5/2) 
which violates the required behaviour for large X. 

The analytic continuation of the 2El function is a standard result and this part of Q can be 
written 

Q2 = Q21 +Q22 (5.4) 
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where 
ff(l+2x/5) f f(- 'J5)Xl-3+,5)/22Fl(�89 /!~_i /~  1 5 1 . 

Q 2 ~ :  {r(~+4~-~,/5),l 5 ~ ~2 ~ 2 - 2 v J ,  ~ - 4 ~ + ~ 4 5 ,  1+,/5; -x) 
(5.5) 

and Q 2 2  is a similar expression with the sign of ,]5 changed. The analytic continuation of Q~ 
can be found in the usual way by writing down the Mellin-Barnes integral and changing the 
contour. The final resuk gives the value of Q in the range X < 1 to be 

Q =�89 1-X/~-, 1; ~+�89 ~-�89 -x) 
,~X/~r(~+,/~-~X/5) 

" 5 1 5 1 

~X/~r(�89 
+ + 5 sin~x/~r(�89189 Qz2. (5.6) 

As X ~  0, the leading term is O (X (- 3-./5)/2). ff we revert to the original variables x and q, the 
solution in the range x ~ fl must satisfy the equation 

2x(1 +x)  2 d2q d~- + [4x(1 +x)+4(1  +x)  2] dq dxx + 2 ( l + x ) q  = - 1 / f l ,  (5.7) 

and the conditions 

q"~fl(-l+'/5)/2X(-3-'/5)/2 for x>>l ,  (5.8) 

and q finite at x = 0. The solutions of (5.7) can be found as series in descending powers of (1 + x) 
and the solution with the required behaviour for large x is 

q = (1 +x)  (-3-'/s)/2 [1 + f a,(1 + x ) - " ] ,  (5.9) 
1 

where 
F(n + 3 + 21-,/5)F(n + �89 + �89 F (1 + #5) (5.10) 

a, = V(n + 1 + X/5)F(n+ 1)r(~ + �89189 +�89 
and this solution diverges when x = 0. The coefficient of Qz2 in (5.6) must therefore be zero, i.e. 

A = - zc r (�89 + 425- + �89 (5.11) 
x/10 sin rc x/~ F ( �89  x/~ + �89 F(1 + 2x/~) ' 

The contributions to the force and couple from the three regions can now be found. The 
inner region x ~/? only makes a contribution O (1/fl) and can be ignored. The contributions 
from the regions X < 1 and X > 1 can be found by integrating the series expansions of the 
hypergeometric functions, term by term. When the contributions to the forces from these 
regions are added to the values obtained in NS for the outer region, the asymptotic values of the 
force and couple coefficients when/~ is large are found to be 

f r  = ~ log ( ~ )  + 1.6t5, (5.12) 

f. - ~  log (~) = + 0.186, (5.13) 

= ~ log ( ~ )  - 0.140, (5.14) 9r 

= - 2  log ( ~ )  - 0.867, (5.15) 9R 

and for a sphere falling under no net couple, the force coefficient is 
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fr = �89 log ( ~ )  /,0"35 + 1 .77-  (5.161 
log ( ~ )  + 2.15 

As pointed out by Goldman, Cox and Brenner [9], a sphere of radius a falling freely with 
speed U very close to a plane would have an angular velocity U/4a on the incompressible 
theory. Allowing for slip, the angular velocity approaches a value depending on the ratio of 
the mean free path to the sphere radius and is always less than U/4a, and may be of opposite 
sign. 

Experiments of Curty, quoted by Goldman, Cox and Brenner [9] on the rate of fall of spheres 
in the vicinity of planes indicated a surprising uniformity over a wide range of materials, fluids 
and sphere sizes, the low Reynolds number values all being given by 

fF = 8.96. (5.171 

If the present results were applicable, much a high value of the resistance would imply a mean 
free path 10 - 7  times the sphere radius, which is far too small. It is noteworthy that the force 
calculated here is independent of the distance of the sphere from the plane, but the present 
theory is not appropriate to the experiments since the mean free path is much smaller than the 
likely size of irregularities on the surfaces, as pointed out by Goldman et al. 

6. Transverse motion of two spheres 

The extension of the analysis of section 4 to the motion of two spheres parallel to their line of 
centres can be achieved in a similar way to the corresponding extension for normal motion. 
The geometry is the same as in section 3, with a sphere of radius a2 with its centre at z-~ h + a2 
and a sphere of radius al with centre at z=  - a l .  It is sufficient to suppose that the sphere al 
is at rest and that the sphere az has a velocity U in the x-direction and an angular velocity (2 in 
the y-direction. As in section 3, the length a is defined by 

a l  a 2 
a - (6.11 

a 1-1- a 2 

and the scalings (4.11 and (4.2) repeated, with the exception 

f2 = Uco/a 2 . (6.2) 

The boundary conditions become 

u-gill ~zOU= v _ l  f lgzz0v=w+(l_a)ru=0 on z = - � 8 9  (6.3) 

where, as before 

u + ~ f l ~ z =  - +~fl~z = 1-co on z = l + � 8 9  2, (6.4 / 

al (6.5) 
O~ = a l + a~ 2 . 

The equations (4.3) to (4.6) still hold and their solution gives an equation for q which is identical 
with (4.9) except that the right-hand side is - 6  (2~- 1 + 09) instead of -6(1 + co). 

The contribution of the inner region to the forces and couples on the spheres can be found in 
a similar way to section 4. If the forces on the spheres in the x-direction are -6n/~oaUf~ (11 
and - 6n#o aUft (21, 

_f(1) = fi(2) = �89 3+3x+f l  + ~xZq+~(2e_ 1) xqdx.  (6.6) 
3+fl o 
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-~ (2) n 8r~#oaa~Ug~ ~), Similarly, if the y-component of the couples on the spheres are 8rC#o aa2 ug~ a d 

l o g 3 + 3 x + f l  1 _ 2 _ - 1  f = 
~(" � 8 8  3 + ~  0 y~ = ~x q-r~ xqdx , 

V2) �88 log 3+3~+~ _~_ f ~ ' = 3+f i  + ~x~q o xqdx .  (6.7) 

The contributions from the outer region must be added to these values to give the complete 
expressions for the forces and couples. These outer contributions are the same as when there is 
no slip, but they have not been fully derived. O'Neill and Majumdar [8] give the terms O (log 
(a/h)) but not the O(1) terms in the asymptotic values of the forces and couples for small h/a. 

-1-O 

- 0 ' 5  

J 

' ' ~ . . . .  ; o e  0"4 1 4 10 20  4 0  1 

Figuro 4. The function ~ (/~). 

However, the forces and couples at arbitrary values of h have been calculated numerically 
(O'Neill and Majumdar [8], Davis [11]) so it is sufficient to derive the additional contribution 
arising from the slip flow, which can be found by subtracting from (6.6) and (6.7) the values of 
these expressions when 13 = 0. If (~ is defined by 

g = o x 5(1+x)  ~ dx ,  (6.8) 

where ~ is the solution of 

d2q [ 2 x ( l + x ) ( 3 + 2 f l + 3 x ) + 4 ( l + x ) 2 ( l + f l + x ) j  2~(1+ x)2(1 +fi+x) ~ + • 

~q 
x dx + ( 1 + x ) ( 3 + z f l + 3 x ) q = - I  (6.9) 

which is finite at x = 0  and which asymptotes to 1/(5x 2) as x tends to infinity, the value of 
as a function of fi can be determined numerically and is plotted in Figure 4. The forces on the 
spheres of radius al and a2 can be written 

(i) (i) -6rc#oaU(f}s  + f} ), -6rC#oaU(f(x2s ) + fs(2)), (6.10) 

respectively, where the suffix NS denotes the values when there is slip and the suffix S the 
additional contribution when slip is included. The couples can similarly be written 

87r#oaal U (g(~) + g (1)) , 87"c#0aa2 trt''(2)~-"(2)~,-" ,~4Ns~ us , ,  (6.11) 

and the values of fs and gs are 

- f s  (1) = fs(Z) = -�89 - co)log (1 +�89 ( 2 1 -  1) (2c~ - 1 + co) (~, (6.12) 

g(s 1) -- -�88 - co) log (1 +�89 �88 + co)0, (6.13) 

g(S 2) = -- �88 - -CO) log(1  +�89 1 +O)O"  (6.14) 
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The asymptotic analysis of O'Neill and Majumdar showed that fNs and gNs contain terms 
0 (log(a/h)) and the asymptotic analysis of section 5 showed that fs and gs contain terms 
O (log fi) for large ft. The logarithmic terms combine to give terms proportional to log (a/2) 
so that, as h tends to zero, the force and couple coefficients tend to constant values. 

7. The collision efficiency of small drops 

In order to determine the changes in the spectrum of drop sizes in a cloud, it is necessary to 
know the collision efficiency for a pair of drops of different sizes. Collisions are produced by 
their different rates of fall under gravity and the efficiency of the collision process is defined as 
follows. Only the smaller drops which lie within a certain vertical cylinder below a larger drop 
Will collide with it. If the two drops were to fall independently, the horizontal cross-section of 
this cylinder would have an area re(a1 +a2) 2, where al and a2 are the two radii. The ratio of 
the actual cross-section within which collisions occur to the cross-section for independent 
motion is the collision efficiency, E. The calculation of E when both drops are sufficiently small 
for the Stokes equations to hold requires the computation of the relative trajectory of the smaller 
sphere, starting from an arbitrary horizontal separation and a large vertical separation and 
using the values of the forces and couples on two spheres moving arbitrarily. Details of the 
calculations can be found in Hocking and Jonas [1] but, because of the difficulty described in 
section 1, collisions were arbitrarily defined as occurring when the gap had become less than 
some small fraction e of the drop radius. If the effects of allowing for slip flow when the gap 
becomes comparable with the mean free path are included, collisions can be precisely defined 
as occurring when the gap becomes zero. Since slip flow must be replaced by free molecule 
flow when the gap becomes very small, and since some of the other effects mentioned in section 1 
must then also be included, the details of the final stage of the motion have not been accurately 
modelled, but such details are unlikely to affect the collision efficiency by a significant amount. 

Some of the calculations of collision efficiencies made by Hocking and Jonas [1] have been 
repeated with the effect of slip included (Jonas [-12], Davis [13]). With the radius ratio fixed 
at �89 three different sizes for the larger drop were used. For a radius of 30 pro, the collision 
efficiency is increased from about 50 percent to 54 percent, and for a radius of 20 pm the increase 
is similar, but proportionally more significant. With ~-- 10-4, the previous results gave E = 2.4 
percent and with e = 10- 3, E -- 4.6 percent, but with slip included, E = 7.3 percent. The propor- 
tional increase is even more marked with a drop of radius 10 #m, for which E is increased from 
less than 1 percent to about 3.2 percent. The calculations for a 20 pm drop indicated that 
collision occurred when, without slip, the gap was 1.32 times the mean free path (compare 
section 2). 

The main conclusions to be drawn from the results of this paper are that, for particles in 
relative motion in a fluid, it is important to include the effect of slip when they are sufficiently 
small (for water drops in air, less than about 20 #m radius) and that a rough guide to the effect 
of slip can be obtained by supposing that collisions will occur when, without slip, the gap 
becomes less than about 1.3 times the mean free path. 
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